9,682 research outputs found

    Antimicrobial activity of Moringa oleifera leaf extracts on multiple drug resistant bacterial isolates from urine samples in Benin City

    Get PDF
    The aim of this study was to examine the antibacterial effect of Moringa oleifera leaf extracts on selected multiple drug resistant (MDR) bacterial isolates. Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus were isolated urine samples from patients attending Lahor Research Medical Centre. Multiple drug resistant bacteria were generated from the isolates by carrying out antibiotic susceptibility testing using the Kirby-Bauer disc diffusion technique. Three isolates each from the multidrug resistant bacteria were selected and molecular characterization was performed for confirming microbial identity. The antibacterial activity of methanol, chloroform and aqueous leaf extracts of M. oleifera at different concentrations (6.25, 12.5, 25, 50 and 100 mg/ml) were analyzed on the selected MDR bacteria using agar disc diffusion method. M. oleifera leaf extracts were observed to inhibit the growth of multidrug resistant bacteria. The highest antibacterial activity 9.32±1.45 mm was observed with the chloroform extracts, while the lowest value of 0.27±0.27 mm was obtained for the aqueous leaf extract. The antibacterial activity examined in this study showed that chloroform and methanol M. oleifera leaf extracts are capable of exerting inhibitory effect on multidrug resistant bacteria. The results obtained in this study indicated that M. oleifera can be a potential source for the treatment of different infections caused by multiple drug resistant bacteria.Keywords: Urine, Multidrug resistant bacteria, polymerase chain reaction, Moringa oleifera, antimicrobia

    Multidrug-Resistant Bacteria in the Community

    Get PDF
    Multidrug resistant (MDR) bacteria are one of the most important current threats to public health. Typically, MDR bacteria are associated with nosocomial infections. However, some MDR bacteria have become quite prevalent causes of community-acquired infections. The spread of MDR bacteria into the community is a crucial development, and is associated with increased morbidity, mortality, healthcare costs and antibiotic use. Factors associated with community dissemination of MDR bacteria overlap but are distinct from those associated with nosocomial spread. Community-associated (CA) MDR bacteria have an antibiotic resistance phenotype that is stable in the absence of antibiotic pressure of the type normally observed in hospitals or nursing homes. An exception to this rule may be those CA-MDR bacteria, of which the prevalence is driven by the presence of antibiotics in the food chain. Additionally, the colonization of otherwise healthy hosts is a common characteristic of CA-MDR bacteria. However, subtle immune deficiencies may still be present in the subjects colonized with specific CA-MDR bacteria. Methicillin-resistant S. aureus (MRSA) is the most prevalent of CA-MDR bacteria. CA-MRSA also has the greatest impact on morbidity and mortality. The main threat on the horizon is represented by Enterobacteriaceae. The production of extended spectrum β-lactamases in Enterobacteriaceae encountered in the community is becoming increasingly prevalent. Of great concern is the potential for the acquisition of carbapenemase genes in CA-Enterobacteriaceae. Prevention of further community spread of MDR bacteria is of the utmost importance, and will require a multi-disciplinary approach involving all stakeholders

    Multidrug-resistant bacteria in clinical practice

    Get PDF

    Prevalence of multidrug resistant bacteria in causing community acquired urinary tract infection among the patients attending outpatient department of Seti Zonal Hospital, Dhangadi, Nepal

    Get PDF
    Involvement of multidrug resistant bacteria in causing community acquired infection is very serious public health issue. The main objective of our study was to determine the prevalence of multidrug resistant bacteria in causing community acquired urinary tract infection. In this study we cultured the 384 mid stream urine samples collected aseptically from the patients attending outpatient department of Seti zonal hospital and having no past history of hospitalization. The organisms isolated were identified by using conventional biochemical tests and antimicrobial susceptibility testing was performed by Kirby Bauer disc diffusion technique. Out of total 384 samples 98 (25.52%) samples showed significant bacterial growth. The most prevalent bacterium isolated was Escherichia coli. 42.86% of the bacteria isolated were found to be multidrug resistant (MDR). The involvement of such large numbers of multidrug resistant bacteria in causing community acquired urinary tract infection is very serious issue and cannot be neglected. And some abrupt initiatives should be taken by the responsible authorities to improve or at least avoid the further worsening of the situation.Nepal Journal of Biotechnology. Dec. 2015 Vol. 3, No. 1: 55-5

    Airborne Multidrug-Resistant Bacteria Isolated from a Concentrated Swine Feeding Operation

    Get PDF
    The use of nontherapeutic levels of antibiotics in swine production can select for antibiotic resistance in commensal and pathogenic bacteria in swine. As a result, retail pork products, as well as surface and groundwaters contaminated with swine waste, have been shown to be sources of human exposure to antibiotic-resistant bacteria. However, it is unclear whether the air within swine operations also serves as a source of exposure to antibiotic-resistant bacterial pathogens. To investigate this issue, we sampled the air within a concentrated swine feeding operation with an all-glass impinger. Samples were analyzed using a method for the isolation of Enterococcus. A total of 137 presumptive Enterococcus isolates were identified to species level using standard biochemical tests and analyzed for resistance to erythromycin, clindamycin, virginiamycin, tetracycline, and vancomycin using the agar dilution method. Thirty-four percent of the isolates were confirmed as Enterococcus, 32% were identified as coagulase-negative staphylococci, and 33% were identified as viridans group streptococci. Regardless of bacterial species, 98% of the isolates expressed high-level resistance to at least two antibiotics commonly used in swine production. None of the isolates were resistant to vancomycin, an antibiotic that has never been approved for use in livestock in the United States. In conclusion, high-level multidrug-resistant Enterococcus, coagulase-negative staphylococci, and viridans group streptococci were detected in the air of a concentrated swine feeding operation. These findings suggest that the inhalation of air from these facilities may serve as an exposure pathway for the transfer of multidrug-resistant bacterial pathogens from swine to humans

    Biogenic nanosilver against multidrug-resistant bacteria (MDRB)

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOMultidrug-resistant bacteria (MDRB) are extremely dangerous and bring a serious threat to health care systems as they can survive an attack from almost any drug. The bacteria’s adaptive way of living with the use of antimicrobials and antibiotics caused t73FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO2015/12534-52014/50867-3465389/20140

    Multidrug-Resistant Bacteria in the Community: An Update

    Get PDF
    Multidrug-resistant bacteria are among the most important current threats to public health. Typically, they are associated with nosocomial infections. However, some have become prevalent causes of community-acquired infections, such as Neisseria gonorrhoeae, Shigella, Salmonella, and Streptococcus pneumoniae. The community spread of multidrug-resistant bacteria is also a crucial development. An important global threat on the horizon is represented by production of carbapenemases by community-acquired hypervirulent Klebsiella pneumoniae. Such strains have already been found in Asia, Europe, and North America. Prevention of further community spread of multidrug-resistant bacteria is of the utmost importance, and will require a multidisciplinary approach involving all stakeholders

    FECAL MICROBIOTA TRANSPLANTATION BEFORE OR AFTER ALLOGENEIC HEMATOPOIETIC TRANSPLANTATION IN PATIENTS WITH HEMATOLOGICAL MALIGNANCIES CARRYING MULTIDRUG-RESISTANCE BACTERIA

    Get PDF
    Fecal microbiota transplantation is an effective treatment in recurrent Clostridium difficile infection. Promising results to eradicate multidrug-resistant bacteria have also been reported with this procedure, but there are safety concerns in immunocompromised patients. We report results in 10 adult patients colonized with multidrug-resistant bacteria, undergoing fecal microbiota transplantation before (n=4) or after (n=6) allogeneic hematopoietic stem cell transplantation for hematologic malignancies. Stools were obtained from healthy related or unrelated donors. Fecal material was delivered either by enema or via nasogastric tube. Patients were colonized or had infections from either carbapenemase-producing bacteria (n=8) or vancomycin-resistant enterococci (n=2). The median age at fecal microbiota transplantation was 48 (range 16-64) years. Three patients needed a second transplant from the same donor, due to initial failure of the procedure. With a median follow-up of 13 (range 4-40) months, decolonization was achieved in seven out of ten patients. In all patients, fecal microbiota transplantation was safe: one patient presented with constipation during the first 5 days after FMT and 2 patients had grade I diarrhea. One case of gut grade III acute graft-versus-host disease occurred after fecal microbiota transplantation. In patients carrying or infected by multidrug-resistant bacteria, fecal microbiota transplantation is an effective and safe decolonization strategy, even in those with hematologic malignancies undergoing hematopoietic stem cell transplantation
    corecore